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We use some well-known properties of the Taylor-Goldstein equation to gener- 
ate a set of stably stratified shear flows with known singular neutral-mode 
solutions. The novel feature of the analysis is that it includes such solutions for 
flows in which, proceeding upwards from a rigid boundary, the Brunt-Vaisalii 
frequency and the flow shear do not change sign and are monotonically decreasing 
functions of height. Such profiles are much closer to the conditions met in work on 
the atmospheric boundary layer than the more frequently used inflected flow 
profiles. 

1. Introduction 
The dynamic stability of stably stratified shear flows is a well-studied topic. 

The general theory as it exists today is to be found in the papers by Miles (1961, 
1963) and Howard (196 1) .  Some further insight into the problem is gained through 
the considerations of the energetics by Ludlam (1967) and Hines (1971), while 
laboratory coniirmation of the theory is obtained from the work of Thorpe 
(1968) and others. No general sufficient condition for instability of these flows 
has been obtained, although we have the results of a number of calculations for 
particular flow profiles to guide us. The work in this note was undertaken to 
eliminate suspicion that flow profiles relevant to the atmospheric boundary 
layer would obey Rayleigh’s (1880) inflexion theorem and thus be stable unless 
subjected to finite disturbances that significantly altered the mean flow. 

The situation may be stated as follows. Rayleigh’s flex-point theorem is 
applicable to shear flows in which gravitational stratification is inoperative. 
A more general law reducing to Rayleigh’s theorem in the appropriate limit 
has been obtained (e.g. Miles 1961) but combined with the so-called semi-circle 
theorem it appears to be trivially obeyed by all potentially unstable modes and 
sets no restrictions on the flex points of the stably stratified system. Arguing on 
the ‘physical ’ grounds that stable stratification should increase the require- 
ments to be met before the breakdown of shear flows, Kuo (1963) suggests that 
the simple Rayleigh theorem should be operative. This ignores the fact that the 
introduction of the stable stratification allows entirely new modes of wave motion 
(the internal gravity waves). In  fact we know of particular examples (e.g. 
Thorpe 1969) in which stratification can destabilize a flow profile. 

However, the stratified flow profiles that have been found to allow instabilities 
5 FLnf 65 



66 G .  Ghimonas 

(as in Taylor 1931; Goldstein 1931; Drazin 1958; Menkes 1961; Thorpe 1969; 
Hazel 1972; Miles & Howard 1964; Jones 1968) all contain inflexions in the flow 
profile, while the constant-shear flow (Taylor 1931; Case 1960) and a piecewise 
linear profile corresponding in some sense to an inflexion-free ‘real’ flow (Jones 
1968) show a complete absence of instability. Likewise Miles (1967) considered a 
semi-infinite inflexion-free jet as a model of atmospheric and oceanic boundary- 
layer flows, and found it to be stable against infinitesimal perturbations. He 
remarks on the inflexion-free nature of the profile as being of possible significance 
in this respect. The density stratification of Miles’ model, in which the Brunt- 
Vaisala frequency tends towards zero in the upper space, eliminates the possibility 
of having an outgoing internal gravity wave a t  the upper boundary (infinity). 
I n  this respect a t  least the model is closer to the unstratified Rayleigh-type 
flows than are many boundary-layer conditions encountered. 

As we shall now show, it is possible to manufacture inflexion-free velocity 
profiles which, together with stratification like that in the atmospheric boundary 
layer, allow singular neutral modes. The work of Miles (1963) then implies the 
existence of contiguous exponentially unstable modes. 

2. Formulation 
Take a rectangular x, z co-ordinate system with 2 in the direction opposite to 

that of the gravitational acceleration g. Let the unperturbed flow field be given 
by some velocity profile %U(z) ,  and through the density field p(x) define the 
stability parameter n known as the Brunt-Vaisala frequency: 

n2 = - gp’lp. (1) 

A prime represents a derivative with respect to x .  The form chosen in (1) shows 
that we are confining ourselves t o  the study of incompressible flows. We shall 
further restrict consideration to perturbations with vertical scales that allow 
the Boussinesq approximation. 

Then flow perturbations of the form 

( 2 )  @ = $ ( x )  e i k ( C t 4  

in the vertical fluid velocity (say) are governed by the equation 

together with appropriate boundary conditions. 
The work of Miles (1961) shows that any unstable modes (ImC 4 0) and the 

singular neutral modes implied by their existence have certain properties, among 
which we find the following of interest. 

(i) U ( Z ) , ~ ~  < Re C < U ( Z ) ~ ~ ~ ,  so that Re [U(x )  - C] = 0 a t  some point(s) 
x = xe (say). 

(ii) At a t  least one such point z, it is necessary that 

R&) = n2(zC)/Uyz,) ,< f. (4) 
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(iii) About such a point z, the solutions $(z)  for the singular neutral modes are 
of the form 

$(2 - 2,) = A,( 2 - Z,)++"Y,( 2 - 2,) + A-(z - 2,)+ Y-(z - z,), ( 5 )  

where v = (t - B&,))+ (6) 

and Y+ and Y- are real analytic functions in the neighbourhood of z,. 
Now let U and n2 be single-valued analytic functions throughout the z interval 

on which solutions are required, so that there is only one singular point z, for 
any given mode. Then the solutions 4' = (Z-Z,)*+~Y+ and $-- = ( x - z , ) ~ - ~ Y -  
and their analytic continuations over the interval are real functions of x to 
within a phase factor which may change only across the point 2,. From the reality 
of these solutions we may easily obtain classes of boundary-value problems for 
which singular neutral modes exist. 

2.1. InJlected flow profiles between rigid boundaries 

Select an n2 and U ,  monotonic functions of z on the real interval I = (-00, co), 
that satisfy the conditions 

where P and Q are real numbers. 

flex point. Then restrict k2 to some value such that 
It is very simple to construct examples of such profiles if U is allowed to have a 

k2 < P2. (8) 

Identify C with U(z,) (so that z, = z,) and select a solution about z, of the form 
(5) with A- = 0. Then, since in each of the intervals (Q2,  co) and ( - 00, - Q 2 )  the 
analytic continuation of this solution is a real function of z (times some phase 
factor), conditions (7 )  and (8) require i t  to have zeros spaced at intervals of z 
less than n/(P2 - k2)3, as may be inferred from Sturm's fundamental theorem. 

Arbitrarily selecting one such zero in each of the upper and lower intervals as 
a location for a rigid boundary, we have constructed a flow system for which this 
solution is an acceptable singular neutral mode. 

A similar treatment based on the solution ( 5 )  with A ,  taken to be identically 
zero would yield a similar result with differently located boundaries. 

2.2. Inflexion-free profiles between rigid boundaries 

None of the steps followed in § 2.1 depended on U having a flex point. As long as 
the profile of n2 and U satisfy the inequalities (7),  the argument carries over. 

If we take a flow profile in which U" tends towards zero at large z ,  where U 
approaches a constant from below and n2a constant fromabove, then (7) is trivially 
obeyed for z > 2,. However, if U" is not to change sign U2 must be unbounded 
as z + - co. Hence, if (7 )  is to be obeyed on the lower subinterval of I ,  n2 must 
also increase at  at  least the same rate. 
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A specific example of an inflexion-free profile obeying these conditions is given 

by 
U = U(co)+$ln( l+e~)-z ,  ( 9) 

( 10) n2 = n2(co) + B2[+ In (1 + eZ2) - 212 

in a, suit,able non-dimensional form. 
Clearly 

lim (U”/( U - C)) = 0, 

lim { n 2 / (  U - C)z  = n“,( Ufco) - C)z, 

lim {n2/( U - C)2} = B2 

lzl+m 

2- m 

and we may follow the procedure in $ 2.1 to construct profiles allowing singular 
neutral modes. It would appear that many other suitable profiles can be formed, 
demonstrating conclusively that Rayleigh’s flex-point theorem does not apply 
t o  the general stratified shear flow. 

In this work we have made use of the reality of v and the non-zero values of 
n2 at the boundaries. If either of these conditions is lost, as in the transition to 
flows with Richardson numbers greater than throughout, or to flows where the 
stratification is lost over any infinite subinterval of I ,  the demonstration fails. 

3. Relation to Yih’s sufficient conditions for the stability of stratified 
flows 

Yih (1970) has obtained joint conditions on the velocity and density profiles 
that provide for stability of the system (see theorem 3 of his paper). These 
results are the most powerful extension of Rayleigh’s theorem known to the 
author. 

As must be expected, the profiles obtained in $32.1 and 2.2 above do not meet 
Yih’s conditions. It is interesting to note that the construction in $ 2.2 produces 
a stratification that increases in the direction of increasing shear. It might be 
thought that such a system would be more stable than one in which the greater 
shears acted in the regions of lesser static stability, but in fact, comparison with 
Yih‘s results shows the contrary. 

The author is indebted to an unknown referee who brought to his attention 
Yih’s paper. This work was supported by the National Science Foundation under 
grant GA-32604. 
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